Waterjet Technology-Using Nature’s Crack System

David Summers WW

 Waterjetting  – Using Nature’s Crack System

In this section (part 2) of the series on Waterjetting, the focus is on the way in which high-pressure waterjets grow cracks in their target. As John Field showed, even the presence of microscopic cracks on a glass surface are enough to initiate the larger cracks that lead to failure. In many cases, however, the most useful growth can be achieved if the cracks only extend to the point that they remove a desired amount of material. This becomes important where there are weaknesses and flaws in the material – such as the layers between plies of wood, or even Kevlar – which should not be grown as the jet cuts down through the material. And in a later article this topic will be a part of a discussion as exactly what happens as a jet drills a hole into a target. But, for today, I would like to talk about crack growths in rock and soil, both because it is one of the oldest ways in which water can penetrate into material, and also because it holds the potential to be one of the newest areas into which waterjetting is growing, and will likely further advance into a more significant business.

And to begin consider that, as water penetrates into the cracks in a rock, and grows those cracks slowly, under natural forces, rocks with minerals in them, will see those mineral particles separately broken out. The classic example of this is with gold. One of the ways in which the Forty-Niners found the gold in California was by panning for the gold particles in the rivers, and tracking the gold deposits back up-stream until they reached the original gold deposits of the Sierra Mountains. Not that this was the first time that water transport had helped in gold mining. One of my favorite stories to begin classes is to remind them of Jason and the Argonauts.

Agronauts Poster

Figure 1. Movie poster for the 1963 film version of Jason and the Argonauts

It is a theme that has been made into a movie several times, (see, for example, here) and tells the story of how the Greek Prince Jason and a band of companions go in search of the Golden Fleece, and the adventures that he has along the way. Despite the mythical creatures the story is thought to be likely based on some measure of truth, with the voyage taking place some time before 1300 B.C. But our focus is on the fleece, rather than the voyagers.

River Rhion

Figure 2. Suggested path that Jason followed to get to the River Rhion in Georgia.(Google Earth)

Within the Caususus mountains of Georgia lies the modern town of Mestia, which was thought in Roman times, to be the site of Colchis, where Jason found the Golden Fleece. The reality is not quite as dramatic as the legend since, as the Roman historian Strabo noted

“It is said that in the country of Colchis, gold is carried down by mountain torrents, and that the barbarians obtain it by means of perforated troughs and fleecy skins, and that this is the origin of the myth of the Golden Fleece”

Syaneti Valley

The torrents of water in the Svaneti valley outside Mestia, (Nika Shmeleva Google Earth at 43deg02’29.74”N, 42deg42’25.13E)

 It is thought that the miners of the time directed the streams so that they flowed over the veins of gold and eroded out the particles so that the gold was carried down to the valley. Here it was fed through the troughs that Strabo described, and the heavy gold particles were captured as they tangled in the wool of the fleece. To recover the gold the miners would then hang the fleeces in trees, so that they would dry, and the gold could be shaken loose. Unfortunately as the fleeces hung in the trees they provided a tempting target for Greek thieves. (In a later version that I will write about in the next post the sheep fleece was replaced with brush that could be dried and burned to release the gold).

Water was thus, in one of the earliest “automated” mining processes, used to both dislodge and then carry the valuable mineral from the mining site The overall power of water to move soil has been used to wash away material for over a hundred years. In the 1973 War between Egypt and Israel the Egyptian Army gained a significant advantage in the early hours of the war by using waterjet monitors to wash away the defensive barrier along the edges of the Suez Canal, rather than using conventional mechanical excavators.

To deal with the massive earthen ramparts, the Egyptians used water cannons fashioned from hoses attached to dredging pumps in the canal. Other methods involving explosives, artillery, and bulldozers were too costly in time and required nearly ideal working conditions. For example, sixty men, 600 pounds of explosives, and one bulldozer required five to six hours, uninterrupted by Israeli fire, to clear 1,500 cubic meters of sand.

The quoted Sunday Times report of the time suggested that the Israeli Army had anticipated that it would take 24-hours to remove the barriers giving time for their Army to mobilize and arrive. However, using a set of five pumps per breech site the Egyptian Army was able to make an opening in as short as a 2-hour time, with the mobilized water cannon opening 81 breeches, and removing 106 million cubic feet of material in that first day of the war. They were thus able to initially advance into the Sinai with relatively little resistance.

The pressure of the water does not have to be high to disaggregate the soil, but large volumes were needed in that application both to break the soil loose and to move it out of the way. Moving the debris out of the way is an important part of the operation, and while, in the above case it could be just pushed to one side, in many more localized jobs, particularly in cities, that is not an answer. However if the soil can be collected with the water, then the fluid can help to move the soil down a pipe away from the working area. And, more importantly, if the soil can be captured as it is being broken loose, then both can be collected before the water has had a chance to penetrate into the soil around the hole, and so the walls of the hole will not get wet, and will remain stable and not fall in.

One way that we have achieved this is to rotate a pair of waterjets relatively rapidly (depending on the material the jet pressure can range from 2,000 psi to 10,000 psi) so that the surface layer is removed, and to immediately take this away by combining the jet action with a vacuum for removal. (In the initial trials we used a Shop Vac to remove both water and debris). This combination has become known as hydro-excavation, and will be the topic of a couple of posts in the future.

Similarly the use of high pressure to break an ore down into its different parts, so that the valuable mineral can be separated from the host rock at the mining machine, is become a new way to reduce the costs of transporting and processing the ore, and make mining more efficient. As yet this latter is still more of a laboratory development, though it will develop for greater use in the future, and there will be additional posts on this too in the future. But, in both cases, the use of waterjets to effectively rely on extending pre-existing cracks makes the systems work. In the next post I’ll write about a couple of other ways of getting enough cracks into the rock as ways of making it easier to separate and remove valuable materials from underground.

Posted by KMT Waterjet Systems 2013 all rights reserved.                        

Waterjet Technology-Crack Growth and Granite Sculpture

David Summers WW

The last post in this KMT Waterjet Blog series showed that the main way in which waterjets penetrate into materials is by growing cracks that already exist within the material, and I used glass as an example to show that this was true.

It is this process during which water penetrates into cracks, and then comes under pressure, either by the impact of more falling water (say under a waterfall in nature) or because the water freezes and then thaws, that causes the cracks in the rock to grow under natural attack, and the rock to slowly erode. As this happens the cracks slowly grow and extend to the point that they meet one another, separating small pieces of rock from the solid.

Within the body of a piece of rock the largest cracks that exist are normally at the boundaries of the grains of different minerals that make up the bulk of the rock. (Back in 1961 Bill Brace showed that the strength of a rock reduced as the square root of the increase in the grain size of that rock ).( Brace, W. F. (1961): Dependence of fracture strength of rocks on grain size. Bulletin of the Mineral Industries Experiment Station, Mining Engineering Series. Rock Mech. 76, 99± 103.) More recently, though still back in 1970, my second grad student, John Corwine, showed that it was possible to predict the strength of a block of granite, knowing the size of its crystals.

Which makes a good time to tell a little anecdote. Back when I was doing my own doctorate at the University of Leeds (UK) we were looking at how waterjets drilled through rock, and how that might be used to make a drill. We had already run some tests of different rocks that we placed under a nozzle, and gradually raised the pressure of the jet to see what pressure it took to make a hole in the rock. Tests on granite had shown that the jet (with a maximum pressure of just under 10,000 psi) would not drill a hole into those rock samples, and so the granite had been set aside. But, with the equipment just finished and yet having to go to lunch, I asked Dennis Flaxington, the lab technician helping me, to put a new sample into the rig so that we could run a test in the afternoon. When I came back I found that he had used a piece of granite. I made several disparaging remarks, at which point he noted that, having spent some significant time putting the rock in the apparatus, I should just go ahead and run the test (which normally took about 5 minutes) rather than being an unmentionable. And so we did, and as I posted earlier, this is the resulting hole in the rock, which we were now able to drill right through in a process that took about half-an-hour.

Granite drilled by waterjet blasting

Figure 1. 9-inch thick block of granite drilled through by a 10,000 psi waterjet at Leeds University. It took over 30 minutes. (Summers, D.A., Disintegration of Rock by High Pressure Jets, Ph.D. Thesis, Mining Engineering, University of Leeds, U.K., 1968.)

 How could this now work, when a single jet clearly did not penetrate into the granite in the earlier tests? The answer is that as we moved the rock under the nozzle (we were slowly spinning the rock under the nozzle, and then raising the rock, since at the time there were no high-pressure swivels available for us to use) the jet passed successively over the edges of the different crystals in the granite. As it entered and pressurized these small fractures, the pressure in the crack was enough to grow the crack and remove individual crystals along the jet path. By starting at the center, and taking successive passes around the axis a large depression was cut into the surface, and the rock could then be raised, and a second smaller layer removed. Repeating this slowly removed the rock in front of the nozzle, and at the end of the test we had drilled through 9 inches of granite.

From this experience, over time we went on to cut, for a University, a lot of granite. Obviously, to cut at a competitive rate we had to cut at a higher pressure that just 10,000 psi. But, after showing that we could cut Georgia granite at a competitive rate in tests run at 15,000 psi down in Elberton, Georgia, Dr. Marian Mazurkiewicz and I led a group of our students in cutting 53 blacks of that granite to form the MS&T Stonehenge that now sits on the University campus.

Stonehenge replica at Missouri University Science and Technology

Figure 2. View of the Stonehenge at Missouri University of Science and Technology, the vertical blocks are some 11 ft tall. The entire sculpture was cut by high pressure water jets operating at between 12,500 and 15,000 psi. (MS&T RMERC ).

Cutting commercially is not quite as simple as it might appear, since larger blocks such as those shown in Figure 2 will contain rock that varies quite significantly in properties as the cuts progress. In the Stonehenge case the rock came from close to the top of the quarry, and the cracks in the rock were quite well defined. Some fifteen years later we were fortunate enough to be asked to cut a second sculpture, but this time working with the internationally acclaimed artist, Edwina Sandys. Edwina had designed a sculpture for the campus, the Millennium Arch, which required that we cut two figures from blocks of Missouri granite, and polish them to create one group, while using the original pieces as part of an Arch that would stand some 50 ft away.

Millennium Arch at Missouri University of Science and Technology

Figure 3. The Millennium Arch at Missouri University of Science and Technology. (Each vertical leg of the Arch is some 15 ft long, and the figures removed and in the background, are 11 ft tall).

 The vertical legs were first cut to shape, and then the figures cut out from them. In order to contain the crack growth to limit the amount of material removed the cutting lance had two jets inclined outwards and the lance was rotated at around 90 rpm, as the lance made repeated passes over the surface, removing between a quarter and half-an-inch of rock on each pass, until it had penetrated through the rock. It took 22 hours of cutting to isolate the female figure from the host block. The slot width was around an inch, and there was some significant difficulty in cutting this slot as the quality of the rock changed within the blocks being cut. (The problem was solved by raising the cutting pressure).

Millennium Arch being cut with Waterjet Technology

Figure 4. Partial cut for one of the figures of the Millennium Arch, checking the depth.

This second sculpture illustrates both an advantage and a problem for the use of waterjets in cutting rock pieces. Use of the water gives a relatively natural look to the rock, although the vertical surfaces of the arch and the capstone were all actually “textured” to look natural using a hand-held lance at 15,000 psi. (The rock is a little harder than that from Georgia and most of the cutting took place at around 18,000 to 20,000 psi). But when the polished surfaces for the inside of the verticals and the isolated figures were prepared the rough initial surface required much more time to grind and polish flat, than a smoother initial cut would have needed.

Because water alone penetrates along crystal and grain boundaries in the rock the surface left is relatively rough. This gets to be even more of a problem if waterjets are used to cut wood. Here the “grain” boundaries are the fibers in the wood structure. Thus when a relatively low pressure jet (10,000 pai) cuts into the wood, it penetrates between the fibers and the cut quality is very poor. One of the first things I have asked students to do, when given the use of a high pressure lance for the first time, was to write their name on a piece of plywood. Here is an example:

Waterjet etching with plywood

Figure 5. Student name written with a high-pressure jet into plywood. Note that areas of the wood around the jet path are lifted by water getting into the ply beneath the surface layer, and that part of the top ply between cuts is removed in places.

I thought about having you guess the student name, Steve, but this is one of the more legible ones. (Female students generally cut the letters one at a time and were more legible, male students tried to write the whole name at once).

There are many similar examples that I could use to illustrate that, while there are tasks where waterjets alone work well, when it comes to precision cutting, then adding a form of sand to the jet stream to provide a much more limited range to the cutting zone can give a considerable advantage, and so the field of abrasive waterjet cutting was born, and discussion of that topic will lead, in time, to a whole series of posts. 

Labels:crack growth,granite,Leeds University,Millennium Arch,Stonehenge,waterjet cutting,wood cut