Waterjet Cutting-Abrasive water jet and cut taper

Dr. Summers Waterjet Blog

KMT Waterjet Systems Weekly Waterjet Series

I have spent some time in recent weeks discussing the use of abrasives in waterjet cutting, and particularly some of the issues that are involved in getting the abrasive distributed relatively evenly through the jet stream, and accelerated to as high a velocity as possible by the time the jet leaves the focusing tube. This issue has become more important as clients request more precise cuts, and edge quality and alignment become more critical. As the jet cuts along a surface the amount of material that is removed (i.e. the depth of cut simplistically) is controlled by the number of particles that impact along that axis. And that, to a degree, is controlled by where that axis lies, relative to the axial diameter of the jet that runs parallel to the direction of cut. Different conditions give different particle densities, but even within those conditions, the material under the center of the jet will see many more particle impacts than those on the side.

Particle distribution across two abrasive waterjet streams with the same focusing tube diameter, but different waterjet orifice diameters

Particle distribution across two abrasive waterjet streams with the same focusing tube diameter, but different waterjet orifice diameters

As the above figure shows, in order to achieve the best abrasive cutting the rate of abrasive feed must be tailored to the nozzle size and the jet parameters. The density of the abrasive in the resulting stream can be optimized for those conditions and, as discussed in earlier posts, adding too much abrasive to the system will end up being counter productive. A simple example can show this, in a test where we cut grooves in a block of granite, with the concentration of abrasive in the jet stream increasing with each pass.

Cuts made into a granite block, with abrasive feed rate increased as the cuts progressed from the left-side of the block to the right. Note that beyond a certain AFR the depth of cut begins to decrease.

Cuts made into a granite block, with abrasive feed rate increased as the cuts progressed from the left-side of the block to the right. Note that beyond a certain AFR the depth of cut begins to decrease.

Figure 2. Cuts made into a granite block, with abrasive feed rate increased as the cuts progressed from the left-side of the block to the right. Note that beyond a certain AFR the depth of cut begins to decrease. (Yazici, Sina, Abrasive Jet Cutting and Drilling of Rock, Ph.D. Dissertation in Mining Engineering, University of Missouri- Rolla, Rolla, Missouri, 1989, 203 pages.) There is, however, a second consequence to the concentration of particles across the jet, and that is that the material under the jet on either side of the center-line of the cut will see a smaller number of particles impacting the surface, than that at the center. As a result the material will not be cut as deeply, and as the slots shown in Figure 2 illustrate, the cut will, as a result taper in on both sides. In many applications, where the material to be cut is relatively thin, or where the exact alignment of the edge is not that critical this may not be important. However there are applications where edge alignment is required on the order of a thousandth of an inch or two over the part thickness, with the part being half-an-inch or more thick. One way to achieve that precision of cut is to slow the traverse speed down. If the jet is moving slowly enough then there will be enough particles hitting the material at the edge of the cut, that the edge will be cut vertically downwards.

The effect of traverse speed on the edge taper angle (in degrees) in cutting titanium.

The effect of traverse speed on the edge taper angle (in degrees) in cutting titanium.

Notice that, because the jet tends to flare out a little as it moves away from the nozzle, the taper angle goes negative if the speed falls to too low a value. In this particular case the nozzle was moving across the surface at a speed of about quarter-of-an-inch per minute. To get enough particles on the sides of the jet to cut a parallel slot edge, however, means that much of the abrasive in the center of the jet is not doing any work, but is rather being powered up and paid for to no real advantage. Thus, in most cases, (though not all) cutting very slowly to achieve precision on the residual edge of the cut is an overly expensive way of achieving the precision. Given the relatively small angle that the taper cuts it is usually more cost-effective (providing the table allows this) to slightly tilt the cutting head, so that at higher cutting speeds the taper is effectively removed on the edge that is left. Obviously the taper on the piece of material being removed is made worse, but if that removed piece is going to be cut later into a different shape for another purpose, then this excessive taper on the initial surface comes with no great cost. The taper angle and the speed relationship will vary both for the material being cut, as well as for the different parameters of the abrasive waterjet, and so – as with most cases where this sort of precision is required – a small test program to establish the best parameters for the cut will be needed. There are other ways of achieving this precision in cutting. One is to make multiple passes over the surface, with the jet removing only very small increments of material at one time. Again if this is carried out carefully and precisely the edge quality can be maintained, at the same time as the depth of cut can be well controlled allowing pockets of material to be removed from the work piece. However that gets into the whole issue of milling material from a target, and that is the topic for another day. It brings up the inter-relationship between traverse speed and depth of cut (which combine to give the area of cut surface, which can be used in some cases to optimize the cutting performance of a system, particularly where edge quality is not that rigid a requirement). And more particularly it brings up the quality of the walls and floor of the pockets created.

Factors to be considered in milling a pocket, illustrated by a multi-level pocket created in glass.

Factors to be considered in milling a pocket, illustrated by a multi-level pocket created in glass.

Figure 4. Factors to be considered in milling a pocket, illustrated by a multi-level pocket created in glass.

Labels:abrasive cutting,abrasive particles,cut taper,milling,particle distribution,traverse speed

Waterjet Technology – Abrasive water jet cutting.

Dr. Summers Waterjet Blog

KMT Waterjet Systems Weekly Waterjet Series

Waterjet Technology – More thoughts on Abrasive cutting.

In the last post I mentioned that the abrasive particles, which are fed into a high-pressure waterjet stream to form the Abrasive WaterJet (AWJ) cutting tool, can be significantly crushed when mixing with the high-pressure waterjet, and before they leave the mixing chamber. Because of this – depending on the application – the choice of abrasive can play a significant role in how well the AWJ performs. I have mentioned a number of times that the Waterjet Lab is located at Missouri University of Science and Technology. That meant (apropos “show me”) that it was an appropriate place to run comparative tests between different abrasives to find which is the best.

It turns out that there is no one single answer to that question, since the abrasive that was the most economical and effective to use in one case does not necessarily give the best results in another. Which brings me to the first point in today’s post. It is relatively easy to get small samples of the different abrasives that might be used in a given job. Setting up a small series of test runs, in which the different abrasives being considered, are fed to the nozzle and use to cut standard cuts into test samples, is a relatively easy way to find out which is the best abrasive for that particular material and cutting path. However it is best not to use only a single test run, we would generally run a series with three different jet pressures and three different abrasive feed rates.

Table showing the change in optimal Abrasive Feed Rate (AFR) on cut depth at different pressures.

Table showing the change in optimal Abrasive Feed Rate (AFR) on cut depth at different pressures.

By bracketing the range that is likely to have the best concentration of abrasive for each pressure (which is not at the same abrasive feed rate, or AFR) the best result can be found for each different pressure value, and the most economical and effective choice for the task in hand can be quickly found. It is important to include economics in the evaluation, since there have been a number of cases we looked at where the most effective choice for abrasive in terms of giving the fastest clean cut was not that much more effective than the second place abrasive, and that alternative was sufficiently cheaper that it made more sense to use it.

The pricing of abrasive, however, is not something that it is easy to generalize over, since there are a number of different factors that come into play, depending where in the country you are located. As a rough guidance, however, we have found that garnet is a more universal cutting abrasive than most others, with less extraneous “issues”, and while it can be less effective than other selections in some conditions, in general it will cut more materials effectively and economically than its challengers. Further mined garnet, in general, performs better than alluvial garnet since it does not have the degree of damage within the particles that leads them to fragment more easily in the mixing chamber.

There are, however, more factors that just the abrasive type that have to be considered. They include the particle size, and range, and then, as noted in the table, there is the selection of the AFR to match the cutting conditions on the table.

One of the more neglected factors relates to the amount of air that is used to carry the abrasive from the hopper into the mixing chamber. The person who did more to shine a light into this corner of the technology was Tabitz, in France. (Tabitz, Schmidt, Parsy, Abriak, and Thery “Effect of Air on accceleration process in AWJ entrainment system, 12th ISJCT, Rouen, 1994 p 47 – 58.)

Because abrasive can cut into the parts of the flow meter, the equipment that they used included a trap between the hopper and the mixing chamber, where the particles could be collected, while the air passed forward to be measured and enter the mixing chamber.

Apparatus-used-by-Tabitz-in-measuring-the-air-flow-to-the-cutting-head-and-mixing-chamber

Apparatus-used-by-Tabitz-in-measuring-the-air-flow-to-the-cutting-head-and-mixing-chamber

The results from the measurement showed that as the jet pressure increased, so for that particular nozzle design, did the amount of air that was being drawn into the chamber – although you may note that it begins to reach a constant volume as the pressure approaches 280 MPa (40,000 psi).

Effect of increased jet pressure on the amount of air drawn into the nozzle, as a percentage of the total volume of the resulting jet.

Effect of increased jet pressure on the amount of air drawn into the nozzle, as a percentage of the total volume of the resulting jet.

The problem that this relatively large volume of air presents is that it has to be accelerated at the same time as the energy in the jet is being transferred to the abrasive particles. The larger the amount of air in the mix, then the greater the amount of water energy that has to be diverted into accelerating the air. This leaves less energy available to accelerate the abrasive itself.

Tabitz modeled the result with a simulation in a computer program, which illustrates, for different abrasive feed rates, how the average abrasive particle velocity falls as the amount of air in the mix increases:

Simulated effect of an increase in air flow on the reduction in average abrasive particle velocity

Simulated effect of an increase in air flow on the reduction in average abrasive particle velocity

Placing small instruments in front of abrasive-laden waterjets can lead to a relatively short life for those instruments, and measurements of actual particle velocities, though they have been made by a number of researchers, have not been as comprehensive as the above chart might indicate.

Nevertheless there is some indication that the above curves are accurate in principle, if not totally real. A jet with very little air might accelerate particles to 1,880 ft/sec, for example. However with 70% air in the mix, then the particle velocity might fall to 1,700 ft/sec, and with 95% of the jet made up of air, then the abrasive particle speed may fall to 1,200 ft/sec. Part of the difficulty in assessment is because of the very short time interval in which the abrasive particles are accelerated while in the mixing chamber. Because the rate of acceleration of the particles is inversely related to their size. Smaller particles are accelerated faster. And this is the counter to the point that was made in the last post about smaller particles cutter less efficiently than larger ones.

Part of the reason for this is that the smaller particles are decelerated faster in air than larger particles. The results of this in terms of cutting power is one of the areas that still requires more research. If, for example, smaller particles are used in an application (for example to achieve a finer detail in the surface cutting) then the effective range of the jet can become smaller than with larger particles. There are some caveats to that statement, and I will go into some of that explanation in the next post.

Labels:abrasive cutting,abrasive waterjet,air content,particle size,particle velocity,Tabitz

Waterjet Technology-Abrasive Sizing

This Waterjet Weekly is written by Dr. David Summers, Curator Professor from The University of Missouri Science and Technology.

This Waterjet Weekly is written by Dr. David Summers, Curator Professor from The University of Missouri Science and Technology.

Over the past 30 years abrasive waterjet cutting has become an increasingly useful tool for cutting a wide range of materials, of varying thickness and strength. However, as the range of applications for the tool has grown, so the requirements for improved performance have also risen. Before being able to make a better quality cut there had to be a better understanding of how abrasive waterjet cutting works, so that the improvements could be made.

Some factors that affect the cutting performance of an abrasive waterjet (After Mazurkiewicz)

Some factors that affect the cutting performance of an abrasive waterjet (After Mazurkiewicz)

This understanding has not been easy to develop, since there are many different factors that all affect how well the cutting process takes place. Consider, first of all, the process of getting the abrasive up to the fastest speed possible. And for the purpose of discussion I am going to use a “generic” mixing chamber and focusing tube nozzle for the following discussion.

Simplified sketch of a mixing chamber and focusing tube nozzle used in adding abrasive to a high pressure waterjet.

Simplified sketch of a mixing chamber and focusing tube nozzle used in adding abrasive to a high pressure waterjet.

As high-pressure water flows through the small orifice (which in the sketch was historically made of sapphire) it enters a larger mixing chamber and creates a suction that will pull abrasive into the mixing chamber through the side passage. That side passage is connected, through a tube, to a form of abrasive feed mechanism,  that I will not discuss in detail today.

However the abrasive does not flow into the mixing chamber by itself. Rather it is transported into the mixing chamber using a fluid carrier. In the some of the earliest models of abrasive waterjet systems water was used as the carrier fluid to bring the abrasive into the mixing chamber. This, as a general rule, turned out to be a mistake.

The problem is that, within the mixing chamber, the energy that comes into the chamber with the high-pressure water has to mix, not only with the abrasive, but also with the fluid that carried the abrasive into the chamber. Water is heavier than air, and so if water is the carrier fluid, then it will absorb more of the energy that is available, with the result that there is less for the abrasive, which – as a result – does not move as quickly and therefore does not cut as well. The principle was first discussed by John Griffiths at the 2nd U.S. Waterjet Conference, although he was discussing abrasive use in cleaning at the time.

Difference in performance of water acting to carry the abrasive to the mixing chamber (wet feed) in contrast with the use of air as the carrier fluid.

Difference in performance of water acting to carry the abrasive to the mixing chamber (wet feed) in contrast with the use of air as the carrier fluid. (Griffiths, J.J., “Abrasive Injection Usage in the United Kingdom,” 2nd U.S. Waterjet Conference, May, 1983, Rolla, MO, pp. 423 – 432.)

Note that this is not the same as directly mixing the abrasive into the waterjet stream under pressure – abrasive slurry jetting – which I will discuss in later posts.

The difference between the two ways of bringing the abrasive to the mixing chamber is clear enough that almost from the beginning only air has been considered as the carrier to bring the abrasive into the mixing chamber. However there is the question as to how much air is enough, how much abrasive should be added, and how effectively the mixing process takes place.

In the earlier developments the equipment available restricted the range of pressures and flow rates at which the high pressure water could be supplied, and these limits bounded early work on the subject.

One early observation, however, was that the size of the abrasive that was being fed into the mixing chamber was not the average size of the abrasive after cutting was over. (At that time steel was not normally used as a cutting abrasive). Because the fracture of the abrasive into smaller pieces might mean that the cutting process became less effective, Greg Galecki and Marian Mazurkiewicz began to measure particle sizes, at different points in the process. (Galecki, G., Mazurkiewicz, M., Jordan, R., “Abrasive Grain Disintegration Effect During Jet Injection,” International Water Jet Symposium,Beijing, China, September, 1987, pp. 4-71 – 4-77.)

For example, by firing the abrasive-laden jet along the axis of a larger plastic tube (here opened to show the construction) the abrasive would, after leaving the nozzle, decelerate and settle into the bottom of the tube, without further break-up, and without damage to the tube. Among other results this allowed a measure of how fast the particles leave the nozzle, since the faster they were moving, then the further they would carry down the pipe.

Test to examine particle size and travel distance, after leaving the AWJ nozzle at the left of the picture. The containing tube has divisions every foot, and small holes over blue containers, so that the amount caught in every foot could be collected and measured.

Test to examine particle size and travel distance, after leaving the AWJ nozzle at the left of the picture. The containing tube has divisions every foot, and small holes over blue containers, so that the amount caught in every foot could be collected and measured.

For one particular test the abrasive going into the system was carefully screened to be lie in the size range between 170 and 210 microns. It was then fed into a 30,000 psi waterjet at a feed rate of 0.6 lb/minute. The particles were captured, after passing through the mixing chamber, but before they could cut anything, by using the tube shown in Figure 4. The size of the particles was then measured, and plotted as a cumulative percentage adding the percentages found at each sieve size over the range to the 210 micron size of the starting particles.

Average size of particles after passing through a mixing chamber and exiting into a capture tube, without further damaging impact.

Average size of particles after passing through a mixing chamber and exiting into a capture tube, without further damaging impact.

The horizontal line shows the point where 50% of the abrasive (by weight) had accumulated, and the vertical line shows that this is at a particle size of 140 microns. Thus, just in the mixing process alone energy is lost in mixing the very fast moving water, with the initially much slower moving abrasive.

And, as an aside, this is where the proper choice of abrasive becomes an important part of an effective cutting operation. Because the distribution of the curve shown in figure 5 will change, with abrasive type, size, concentration added, as well as the pressure and flow rate of the nozzle through which the water enters the mixing chamber.

I will have more to discuss on this in the next post, but will leave you with the following result. After we had run the tests which I just mentioned, we collected the abrasive in the different size ranges. Then we used those different size ranges to see how well the abrasive cut. This was one of the results that we found.

The effect of the size of the feed particles into the abrasive cutting system on the depth of cut which the AWJ achieved.

The effect of the size of the feed particles into the abrasive cutting system on the depth of cut which the AWJ achieved.

You will note that down to a size of around 100 microns the particle size did not make any significant difference, but that once the particle size falls below that range, then the cutting performance degrades considerably. (And if you go back to figure 5, you will note that about 30% of the abrasive fell into that size range, after the jet had left the mixing chamber).

 

Waterjet Cutting-Introduction to Abrasive Waterjet

This Waterjet Weekly is written by Dr. David Summers, Curator Professor from The University of Missouri Science and Technology.

This Waterjet Weekly is written by Dr. David Summers, Curator Professor from The University of Missouri Science and Technology.

In recent articles in this series I have written about the processes that occur as a high-pressure waterjet impacts on a surface and then begins to penetrate and cut into it. However, as I noted in the last post, one of the problems with using plain water as the cutting medium is that it can pressurize within the cut and exploit any surrounding cracks, to the point that the edges of the cut are cracked and fractured, often back up to the top surface of the material.

High-pressure waterjet cut along a sheet of Plexiglas, note the fracturing along the sides of the cut.

High-pressure waterjet cut along a sheet of Plexiglas, note the fracturing along the sides of the cut.

This is not usually desirable, and what is needed is a way of cutting into these materials, so that the cut edges remain smooth, and the risk of shattering around the cut line is much diminished. The way that is usually used for this is to add small amounts of a fine cutting abrasive into the waterjet stream, and use this to cut the slots in the material, with the water there to add cutting power.

Abrasive waterjet (AWJ) cuts through safety glass. Note that there are two sheets of glass with a thin plastic sheet attached between the two.

Abrasive waterjet (AWJ) cuts through safety glass. Note that there are two sheets of glass with a thin plastic sheet attached between the two.

This can be of particular advantage if you are faced with trimming, for example, safety glass (as shown in Figure 2). Cutting and shaping this glass used to be a significant problem in the industry, since the presence of the plastic sheet, between the two glass layers meant that it was not always possible to get both to break to the same plane if scribed with a glass cutter. Failure rates of up to 30% were described, to the author, as common when the technology switch to AWJ took place. And with the abrasive in the water, the jet cuts through both layers without really seeing that there was a problem. (And complex contours can also be cut).

The combination of abrasive and high-pressure water has many advantages over existing tools. Among other things it removes the majority of the heat from the cut zone, so that in almost all cases the Heat Affected Zone (HAZ) along the edges of the cut disappears and the quality of the cut surface becomes, when properly cut, sufficient to require no further processing. This can lead to a significant savings in certain forms of fabrication.

There are many different ways in which abrasive can be added to a high speed stream of water, and Dr. Hashish illustrated some of these in the introductory lecture he gave at an early WJTA Short Course, as follows:

Some different ways of introducing abrasive into the cutting stream of a high-pressure waterjet (After Hashish, WJTA Short Course Notes).

Some different ways of introducing abrasive into the cutting stream of a high-pressure waterjet (After Hashish, WJTA Short Course Notes).

The top three (a, b, c) involve mixing the abrasive and the water streams at the nozzle, while the fourth (d) is a relatively uncommon design that is used in cleaning surface applications, and the fifth has never been very effective in any trial that we have run. The sixth (e) technique has become known by a number of different names, but for now, to distinguish it from the more widely used Abrasive Water Jet cutting (AWJ) I will give it the acronym ASJ, for Abrasive Slurry Jetting. It has a number of benefits in different circumstances, and I will write more about it in future posts. In more recent alternative designs to that shown by Dr. Hashish the flow to the abrasive holding tank is more commonly through a diverted fraction of the total flow from the pump or intensifier.

Very simplified illustration of the circuit where abrasive is added to the flow from the pump/intensifier before the nozzle. Obviously the abrasive is held in a pressurized holding vessel – the optimal design of which is not immediately obvious.

Very simplified illustration of the circuit where abrasive is added to the flow from the pump/intensifier before the nozzle. Obviously the abrasive is held in a pressurized holding vessel – the optimal design of which is not immediately obvious.

When fine abrasive is added to a narrow waterjet stream, and that jet is moving at thousands of feet a second, there are a number of considerations in the design of the mixing chamber, and those will be discussed in future posts. But one early conclusion is that, if the jet is going to be small, then the abrasive that will be mixed with it will also have to be quite small, though – as will be noted in a future post – not too small.

The simplified and generic components of a mixing chamber that mixes abrasive with high-pressure water in an AWJ system.

The simplified and generic components of a mixing chamber that mixes abrasive with high-pressure water in an AWJ system.

There were a number of problems with the early systems, such as that shown in Figure 5, at the time that systems first appeared on the market, and I will write about some of these as the next few posts continue to focus on this subject.

There have been a number of different abrasives used over the years, and it depends on the needs of the job as to which is the most suitable in a given case. In some cases discriminate cutting is required, and so an abrasive can be chosen that will cut the desired layer on the surface, but not the material behind it. In other cases the target material is extremely tough, and so abrasive may be selected that will rapidly erode the supply lines and nozzle, but which can still prove economically viable in certain cases.

Various types of abrasive, that can include (from bottom left going clockwise) blasting sand, copper slag, garnet and olivine.

Various types of abrasive, that can include (from bottom left going clockwise) blasting sand, copper slag, garnet and olivine.

There are many different properties of the cutting system, and the abrasive which control the quality and speed of the resulting cut. Some of these will be the topic of the next few posts, others will be discussed in further posts at a more distant time, when we discuss different cutting applications and the changes in a conventional system that might be made to get the best results in those cases.

Abrasive properties are not just a case of knowing what the material is. There is a difference, for example, in cutting ability between alluvially mined garnet and that mined from solid rock. There is a difference between different types of the nominally same abrasive when it comes from different parts of the world, and there are differences when the shapes of the abrasive differ. Glass beads and steel shot cut in a different way that glass and steel grit, for example. So there is plenty to discuss as we turn to a deeper discussion of abrasive waterjet cutting.

Parameters controlling the cutting by an abrasive waterjet system. (After Mazurkiewicz)

Parameters controlling the cutting by an abrasive waterjet system. (After Mazurkiewicz)