Waterjet Technology – The Heat of a Waterjet Cut

This Waterjet Weekly is written by Dr. David Summers, Curator Professor from The University of Missouri Science and Technology.

This Waterjet Weekly is written by Dr. David Summers, Curator Professor from The University of Missouri Science and Technology.

In the last three posts I have been discussing the quantity of heat that is created when machine tools are used in the cutting of rock, metals and other materials. The amount that the temperature of both the cutting tool and work piece material will increase, and the effect that this has on the cutting tool and the finished part can, as I have shown, be reduced if a quite small stream of high-pressure water is directed into the small zone where the cutting is taking place. But what happens if the cutting process doesn’t use the large scale typical mechanical cutting tools, but instead uses the very small particles embedded within the jet stream itself as part of an abrasive waterjet cutting system? For many years the evidence, after the cut was over, indicated that there was very little heat build-up in the part, and the process appeared to be a “cold cut,” but there was no immediate evidence, because of the rapidity with which the cut was made. However, with advances in technology that limitation was removed, and research scientists at the University of Hannover have now been able to make temperature measurements during cutting. (A Thermographical Map of Tool and Workpiece During the Cutting Process by Plain Waterjet and Abrasive Waterjet up to 900 MPa, H. Louis, A. Schenk, F. Pude and M. Mohamed, 17th International Conference on Waterjet Cutting Technology). The group used an infra-red camera connected into a computer to capture images as an abrasive waterjet cut into a target work sample. The instrument had been calibrated to show the color temperatures that the image revealed.

Figure 1. Temperatures read through an infrared camera as an abrasive jet cuts into a target plate.

Figure 1. Temperatures read through an infrared camera as an abrasive jet cuts into a target plate.

The arrangement by which the images were obtained was relatively simple:

Figure 2. Experimental arrangement allowing capture of the temperature build-up in the cutting head, the abrasive jet and the work piece during an AWJ cut

Figure 2. Experimental arrangement allowing capture of the temperature build-up in the cutting head, the abrasive jet and the work piece during an AWJ cut

During the course of the experiment the size of the cutting jet and the pressure were changed to find how these controlled the temperatures that were generated in the different parts of the operation. The work first examined the results when only a plain waterjet, without abrasive particles, was used in cutting.

Figure 3. Temperature build-up when plain waterjets (at 125,000 psi) are being used to cut a piece.

Figure 3. Temperature build-up when plain waterjets (at 125,000 psi) are being used to cut a piece.

Note that there is not a large amount of heat generated in the part, in this case a temperature rise to 126 Deg F was measured, though the temperature rise in the nozzle holder was similar in range. When the effects of jet flow and pressure were plotted, the role that an increase in pressure played in raising the part temperature around the cutting zone is clear. Note, in Figure 3, the region over which the temperature has been raised in the work piece.

Figure 4. Temperature rise in the nozzle holder as a function of jet pressure

Figure 4. Temperature rise in the nozzle holder as a function of jet pressure

Note that at pressures of up to 100,000 psi (700 MPa) the temperature rise is only up to 86 deg F, much less than that in conventional mechanical cutting. When abrasive is added to the jet stream, then the temperatures generated, as Figure 1 indicated, are higher in the nozzle holder, because of the impact of the particles with the focusing tube as part of the particle acceleration. The piece was moved under the jet at 1.2 inches/minute, with an abrasive feed of 0.06 lb/minute, with jet pressures varied from 42,000 psi to 115,000 psi. (300 to 800 MPa). The target was a metal alloy. Not surprisingly as the pressure in the jet increased, so did the temperature in the focusing tube.

Figure 5. Temperature increase in the focusing tube, as a function of jet pressure

Figure 5. Temperature increase in the focusing tube, as a function of jet pressure

Temperatures were measured at the top, middle and bottom of the cut which the AWJ made through the target material, and these are shown in the following plot:

Figure 6. Temperature build-up in the work piece during the cutting operation

Figure 6. Temperature build-up in the work piece during the cutting operation

The graph shows that the temperature build-up is greatest in the middle of the cut, although this difference is small, and begins to disappear as the jet pressure increases. At 100,000 psi the temperature can rise to 150 deg F. In most cutting work that temperature rise would not be enough to cause any damage to the part being cut. Where very temperature sensitive materials have been cut with the jet at lower pressures and higher speeds at MS&T the zone of influence of the cutting operation was measured in microns. It is in living tissue, which can be more sensitive to temperature, where this can be a problem. The University in Hannover is internationally recognized for the work that it has been carrying out in to the use of high pressure waterjets in medical applications. While this is a subject for another day (or several since the range of applications continues to grow from year to year) the caution comes from work on cutting bone and reported at the 18th International Jet Cutting Conference in Gdansk by Biskup et al “Temperature measurement during abrasive water jet cutting of cortical bone measured by thermocouples”). Bear in mind, however, that one of the problems that the technology is seeking to address in these bone cutting experiments is to achieve a better quality cut than can be achieved with a hand saw, which has often been the tool used by a surgeon when dissecting bone, and the required edge quality is sometimes more difficult to achieve with that tool.

Figure 7. Temperature build-up in bone under varying conditions and for two bone thicknesses, as a function of residence time.

Figure 7. Temperature build-up in bone under varying conditions and for two bone thicknesses, as a function of residence time.

It can be seen that a thicker bone sample does become vulnerable to too high a temperature if there is a significant exposure time before the part is pierced. However, with an appropriate selection of parameters the temperature can be kept down in a range where the tissue does not die, and the considerable advantages to jet use can therefore be used. Keeping the parts being cut cool is important in very delicate and precise work, where thermal distortion of the metal, particularly in thin but deep cuts, can otherwise lead to unacceptable failures to maintain tolerance.

 

Waterjet Technology – Abrasive water jet cutting.

Dr. Summers Waterjet Blog

KMT Waterjet Systems Weekly Waterjet Series

Waterjet Technology – More thoughts on Abrasive cutting.

In the last post I mentioned that the abrasive particles, which are fed into a high-pressure waterjet stream to form the Abrasive WaterJet (AWJ) cutting tool, can be significantly crushed when mixing with the high-pressure waterjet, and before they leave the mixing chamber. Because of this – depending on the application – the choice of abrasive can play a significant role in how well the AWJ performs. I have mentioned a number of times that the Waterjet Lab is located at Missouri University of Science and Technology. That meant (apropos “show me”) that it was an appropriate place to run comparative tests between different abrasives to find which is the best.

It turns out that there is no one single answer to that question, since the abrasive that was the most economical and effective to use in one case does not necessarily give the best results in another. Which brings me to the first point in today’s post. It is relatively easy to get small samples of the different abrasives that might be used in a given job. Setting up a small series of test runs, in which the different abrasives being considered, are fed to the nozzle and use to cut standard cuts into test samples, is a relatively easy way to find out which is the best abrasive for that particular material and cutting path. However it is best not to use only a single test run, we would generally run a series with three different jet pressures and three different abrasive feed rates.

Table showing the change in optimal Abrasive Feed Rate (AFR) on cut depth at different pressures.

Table showing the change in optimal Abrasive Feed Rate (AFR) on cut depth at different pressures.

By bracketing the range that is likely to have the best concentration of abrasive for each pressure (which is not at the same abrasive feed rate, or AFR) the best result can be found for each different pressure value, and the most economical and effective choice for the task in hand can be quickly found. It is important to include economics in the evaluation, since there have been a number of cases we looked at where the most effective choice for abrasive in terms of giving the fastest clean cut was not that much more effective than the second place abrasive, and that alternative was sufficiently cheaper that it made more sense to use it.

The pricing of abrasive, however, is not something that it is easy to generalize over, since there are a number of different factors that come into play, depending where in the country you are located. As a rough guidance, however, we have found that garnet is a more universal cutting abrasive than most others, with less extraneous “issues”, and while it can be less effective than other selections in some conditions, in general it will cut more materials effectively and economically than its challengers. Further mined garnet, in general, performs better than alluvial garnet since it does not have the degree of damage within the particles that leads them to fragment more easily in the mixing chamber.

There are, however, more factors that just the abrasive type that have to be considered. They include the particle size, and range, and then, as noted in the table, there is the selection of the AFR to match the cutting conditions on the table.

One of the more neglected factors relates to the amount of air that is used to carry the abrasive from the hopper into the mixing chamber. The person who did more to shine a light into this corner of the technology was Tabitz, in France. (Tabitz, Schmidt, Parsy, Abriak, and Thery “Effect of Air on accceleration process in AWJ entrainment system, 12th ISJCT, Rouen, 1994 p 47 – 58.)

Because abrasive can cut into the parts of the flow meter, the equipment that they used included a trap between the hopper and the mixing chamber, where the particles could be collected, while the air passed forward to be measured and enter the mixing chamber.

Apparatus-used-by-Tabitz-in-measuring-the-air-flow-to-the-cutting-head-and-mixing-chamber

Apparatus-used-by-Tabitz-in-measuring-the-air-flow-to-the-cutting-head-and-mixing-chamber

The results from the measurement showed that as the jet pressure increased, so for that particular nozzle design, did the amount of air that was being drawn into the chamber – although you may note that it begins to reach a constant volume as the pressure approaches 280 MPa (40,000 psi).

Effect of increased jet pressure on the amount of air drawn into the nozzle, as a percentage of the total volume of the resulting jet.

Effect of increased jet pressure on the amount of air drawn into the nozzle, as a percentage of the total volume of the resulting jet.

The problem that this relatively large volume of air presents is that it has to be accelerated at the same time as the energy in the jet is being transferred to the abrasive particles. The larger the amount of air in the mix, then the greater the amount of water energy that has to be diverted into accelerating the air. This leaves less energy available to accelerate the abrasive itself.

Tabitz modeled the result with a simulation in a computer program, which illustrates, for different abrasive feed rates, how the average abrasive particle velocity falls as the amount of air in the mix increases:

Simulated effect of an increase in air flow on the reduction in average abrasive particle velocity

Simulated effect of an increase in air flow on the reduction in average abrasive particle velocity

Placing small instruments in front of abrasive-laden waterjets can lead to a relatively short life for those instruments, and measurements of actual particle velocities, though they have been made by a number of researchers, have not been as comprehensive as the above chart might indicate.

Nevertheless there is some indication that the above curves are accurate in principle, if not totally real. A jet with very little air might accelerate particles to 1,880 ft/sec, for example. However with 70% air in the mix, then the particle velocity might fall to 1,700 ft/sec, and with 95% of the jet made up of air, then the abrasive particle speed may fall to 1,200 ft/sec. Part of the difficulty in assessment is because of the very short time interval in which the abrasive particles are accelerated while in the mixing chamber. Because the rate of acceleration of the particles is inversely related to their size. Smaller particles are accelerated faster. And this is the counter to the point that was made in the last post about smaller particles cutter less efficiently than larger ones.

Part of the reason for this is that the smaller particles are decelerated faster in air than larger particles. The results of this in terms of cutting power is one of the areas that still requires more research. If, for example, smaller particles are used in an application (for example to achieve a finer detail in the surface cutting) then the effective range of the jet can become smaller than with larger particles. There are some caveats to that statement, and I will go into some of that explanation in the next post.

Labels:abrasive cutting,abrasive waterjet,air content,particle size,particle velocity,Tabitz

Waterjet Technology-Abrasive Sizing

This Waterjet Weekly is written by Dr. David Summers, Curator Professor from The University of Missouri Science and Technology.

This Waterjet Weekly is written by Dr. David Summers, Curator Professor from The University of Missouri Science and Technology.

Over the past 30 years abrasive waterjet cutting has become an increasingly useful tool for cutting a wide range of materials, of varying thickness and strength. However, as the range of applications for the tool has grown, so the requirements for improved performance have also risen. Before being able to make a better quality cut there had to be a better understanding of how abrasive waterjet cutting works, so that the improvements could be made.

Some factors that affect the cutting performance of an abrasive waterjet (After Mazurkiewicz)

Some factors that affect the cutting performance of an abrasive waterjet (After Mazurkiewicz)

This understanding has not been easy to develop, since there are many different factors that all affect how well the cutting process takes place. Consider, first of all, the process of getting the abrasive up to the fastest speed possible. And for the purpose of discussion I am going to use a “generic” mixing chamber and focusing tube nozzle for the following discussion.

Simplified sketch of a mixing chamber and focusing tube nozzle used in adding abrasive to a high pressure waterjet.

Simplified sketch of a mixing chamber and focusing tube nozzle used in adding abrasive to a high pressure waterjet.

As high-pressure water flows through the small orifice (which in the sketch was historically made of sapphire) it enters a larger mixing chamber and creates a suction that will pull abrasive into the mixing chamber through the side passage. That side passage is connected, through a tube, to a form of abrasive feed mechanism,  that I will not discuss in detail today.

However the abrasive does not flow into the mixing chamber by itself. Rather it is transported into the mixing chamber using a fluid carrier. In the some of the earliest models of abrasive waterjet systems water was used as the carrier fluid to bring the abrasive into the mixing chamber. This, as a general rule, turned out to be a mistake.

The problem is that, within the mixing chamber, the energy that comes into the chamber with the high-pressure water has to mix, not only with the abrasive, but also with the fluid that carried the abrasive into the chamber. Water is heavier than air, and so if water is the carrier fluid, then it will absorb more of the energy that is available, with the result that there is less for the abrasive, which – as a result – does not move as quickly and therefore does not cut as well. The principle was first discussed by John Griffiths at the 2nd U.S. Waterjet Conference, although he was discussing abrasive use in cleaning at the time.

Difference in performance of water acting to carry the abrasive to the mixing chamber (wet feed) in contrast with the use of air as the carrier fluid.

Difference in performance of water acting to carry the abrasive to the mixing chamber (wet feed) in contrast with the use of air as the carrier fluid. (Griffiths, J.J., “Abrasive Injection Usage in the United Kingdom,” 2nd U.S. Waterjet Conference, May, 1983, Rolla, MO, pp. 423 – 432.)

Note that this is not the same as directly mixing the abrasive into the waterjet stream under pressure – abrasive slurry jetting – which I will discuss in later posts.

The difference between the two ways of bringing the abrasive to the mixing chamber is clear enough that almost from the beginning only air has been considered as the carrier to bring the abrasive into the mixing chamber. However there is the question as to how much air is enough, how much abrasive should be added, and how effectively the mixing process takes place.

In the earlier developments the equipment available restricted the range of pressures and flow rates at which the high pressure water could be supplied, and these limits bounded early work on the subject.

One early observation, however, was that the size of the abrasive that was being fed into the mixing chamber was not the average size of the abrasive after cutting was over. (At that time steel was not normally used as a cutting abrasive). Because the fracture of the abrasive into smaller pieces might mean that the cutting process became less effective, Greg Galecki and Marian Mazurkiewicz began to measure particle sizes, at different points in the process. (Galecki, G., Mazurkiewicz, M., Jordan, R., “Abrasive Grain Disintegration Effect During Jet Injection,” International Water Jet Symposium,Beijing, China, September, 1987, pp. 4-71 – 4-77.)

For example, by firing the abrasive-laden jet along the axis of a larger plastic tube (here opened to show the construction) the abrasive would, after leaving the nozzle, decelerate and settle into the bottom of the tube, without further break-up, and without damage to the tube. Among other results this allowed a measure of how fast the particles leave the nozzle, since the faster they were moving, then the further they would carry down the pipe.

Test to examine particle size and travel distance, after leaving the AWJ nozzle at the left of the picture. The containing tube has divisions every foot, and small holes over blue containers, so that the amount caught in every foot could be collected and measured.

Test to examine particle size and travel distance, after leaving the AWJ nozzle at the left of the picture. The containing tube has divisions every foot, and small holes over blue containers, so that the amount caught in every foot could be collected and measured.

For one particular test the abrasive going into the system was carefully screened to be lie in the size range between 170 and 210 microns. It was then fed into a 30,000 psi waterjet at a feed rate of 0.6 lb/minute. The particles were captured, after passing through the mixing chamber, but before they could cut anything, by using the tube shown in Figure 4. The size of the particles was then measured, and plotted as a cumulative percentage adding the percentages found at each sieve size over the range to the 210 micron size of the starting particles.

Average size of particles after passing through a mixing chamber and exiting into a capture tube, without further damaging impact.

Average size of particles after passing through a mixing chamber and exiting into a capture tube, without further damaging impact.

The horizontal line shows the point where 50% of the abrasive (by weight) had accumulated, and the vertical line shows that this is at a particle size of 140 microns. Thus, just in the mixing process alone energy is lost in mixing the very fast moving water, with the initially much slower moving abrasive.

And, as an aside, this is where the proper choice of abrasive becomes an important part of an effective cutting operation. Because the distribution of the curve shown in figure 5 will change, with abrasive type, size, concentration added, as well as the pressure and flow rate of the nozzle through which the water enters the mixing chamber.

I will have more to discuss on this in the next post, but will leave you with the following result. After we had run the tests which I just mentioned, we collected the abrasive in the different size ranges. Then we used those different size ranges to see how well the abrasive cut. This was one of the results that we found.

The effect of the size of the feed particles into the abrasive cutting system on the depth of cut which the AWJ achieved.

The effect of the size of the feed particles into the abrasive cutting system on the depth of cut which the AWJ achieved.

You will note that down to a size of around 100 microns the particle size did not make any significant difference, but that once the particle size falls below that range, then the cutting performance degrades considerably. (And if you go back to figure 5, you will note that about 30% of the abrasive fell into that size range, after the jet had left the mixing chamber).

 

Waterjet Technology-Abrasive waterjet cutting

Dr. Summers Waterjet Blog

KMT Waterjet Systems Weekly Waterjet Series

There are a number of different abrasives that can be supplied by different sources, and the market for the small grains that are used in abrasive waterjet cutting extends considerably beyond just the waterjet business. All abrasives are not created equal, some work better in one condition, others in another. As with other tools that the waterjet cutter or cleaner will use, first you should decide what the need for the abrasive is, and run a small series of tests to find out which is the best set of cutting conditions for that particular job.

The first item on the list should be the material that has to be cut. (Although abrasives are also used in cleaning, that will be covered in a later post). There are, simplifying greatly, two classes of material that have to be cut. One class responds in a brittle way (think glass) and the other responds in a ductile or yielding manner (think metal). Because of these different responses, when the particles hit the surface, the way in which cuts are best made will vary between the two. Some years ago Ives and Ruff shot abrasive particles at different targets and found that there was a difference in the amount of material removed, but the best angle at which the particles should be aimed changed with the material.

The Effect of change in impact angle on erosion rate for ductile and brittle targets.

The Effect of change in impact angle on erosion rate for ductile and brittle targets.

Some work at The University of Missouri Science and Technology  just before I retired indicated that the shape of these curves changed a little, depending on the size of the abrasive that is used. There are also some changes with abrasive shape. And this is because of the entirely different way in which an abrasive particle cuts into the two different materials. In this post we’ll discuss only the ductile target.

If a relatively smooth particle is shot into a ductile material at an angle perpendicular to the surface, then when it hits the surface the target material will flow out from underneath, but not be removed. As the following micro-photograph shows the particles can become embedded in the material – and even add to the weight of the piece on rare occasion.

Microphotograph showing a sand particle buried in the surface of an aluminum target.

Microphotograph showing a sand particle buried in the surface of an aluminum target.

There is very little material removed in this case, as the black curve shows in Figure 1, when the impact angle approaches 90 degrees. Consider that if you take a knife and push it down into butter you don’t remove any butter. But if you drag the knife over the butter surface you will peel off a layer.

So it is with abrasive hitting a ductile metal. If the abrasive is brought in at an angle, (optimized in the figure at 15 degrees) then the abrasive has a cutting energy along the surface and this will peel up, and remove small pieces of the surface. By taking a microphotograph along the edge of an abrasive cut, we were able to show the action of individual particles in cutting into the metal.

Individual particle impacts on an aluminum surface, showing the cutting and plowing action of the particles.

Individual particle impacts on an aluminum surface, showing the cutting and plowing action of the particles.

Where the surface is plowed up, but not removed, another particle has to hit that point to remove the relatively fragile lip. However, if the particle is a copper slag, or other relatively weak material, it can shatter during the cutting process, and the breaking pieces can break off that lip, so that – again in the right material – the slag may give a better performance than a more expensive alternative.

But if we are to cut metal in this way, what does that say about the shape of the particles that we need to use. Obviously if they were round, such as a steel or glass shot, then there would be no sharp edges to cut into and peel off the material. Thus a steel or glass grit will cut better, though each particle needs a certain thickness in all dimensions so that there will be enough energy to both cut into the material, and plow along it.

Difference in cut depth achieved with broken glass fragments over glass beads when cutting metal.

Difference in cut depth achieved with broken glass fragments over glass beads when cutting metal.

A relatively round particle with sharp corners, and garnet is usually such a particle, can often work well in cutting a range of different ductile materials.

Schematic of how a particle of different shapes might cut into material.

Schematic of how a particle of different shapes might cut into material.

Now that is fine when a high-pressure abrasive waterjet (AWJ) is starting to cut into the surface, but as the jet cuts down into the surface the angle of the cut will change. Yet even if the jet is pointing directly down into the target, and moving along to cut through it, the cut surface is not usually a straight line down through the material.

Cutting through glass, note the curved path of the jet through the one-inch material.

Cutting through glass, note the curved path of the jet through the one-inch material.

 Cuts into Plexiglas and other clear materials have allowed research scientists to monitor the cut path through the target, as a function of time. It is not a constant shape, but, as Dr. Henning showed at the 18th International Conference, the edge of the cut changes with time. You can see the results of this in cuts that are made through metal where the paths of the cut, particularly lower in the cut, curve around and back towards the start of the cut.

Cut into steel, with the face piece of metal removed to show the cut surface.

Cut into steel, with the face piece of metal removed to show the cut surface.

This path confirms an explanation first proposed by Dr Lars Ohlsson in his doctorate at Lulea in Sweden. He pointed out that the change in the surface of the cut is caused by the sequence of actions that a particle sees as it comes down onto the surface.

First it comes in almost vertically, with no lateral energy, and it cuts in the smooth, upper part of the cut. Then it rebounds out of the cut, but into the jet stream that gives it a little more energy, and directs it along the cut to a second point where it will cut a little bit more of the metal. But during the first rebound the particle does not bounce perfectly along the cut, but deviates to one side or the other. This means that when it makes the second cut, it will now cut more into one side of the wall or the other. Thus, where the second bounce occurs, so the surface gets a little rougher.

Frames from a high speed video showing abrasive waterjet cutting of glass, with the jet cutting, rebounding down the cut and then cutting again.

Frames from a high speed video showing abrasive waterjet cutting of glass, with the jet cutting, rebounding down the cut and then cutting again. (Lars Ohlsson “The Theory and Practice of Abrasive Water Jet Cutting”, Doctoral Thesis, Division of Materials Processing, Lulea University of Technology, 1995)

By the time of the third cut and rebound, the jet will now be coming into the opposing side of the cut with an even greater lateral portion of its energy, and so the cut will get a little rougher. Remember also that each cut is made up of the impacts of very many particles. So that succeeding particles also rebound along the curve cut by the preceding particle, and this also will exacerbate the roughness of the cut.

We’ll talk a little about reducing this effect in the next post.